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Preface

This technical report consists of three parts. The central problem

is the estimation of three-dimensional motion parameters of a rigid planar

patch from image sequences (each frame is a central projection).

In Part I, we show that given two Image frames one can determine

uniquely (by solving linear equations) eight "pure parameters" which are

nonlinear functions of the actual motion parameters. In Part II, a method

- - is presented for determining the motion parameters from the eight pure para-

V meters. The method requires the singular value decomposition of a 3 x 3

matrix. 'It is also shown that generally there are two distinct solutions

for the motion parameters. Two results are given in Part III. First, four

point correspondences between two image frames are necessary and sufficient

to determine the eight pure parameters. 'Second, with three Image frames,

the motion parameters are unique.
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ESTIMATING THREE-DIMENSIONAL MOTION
PARAHETERS OF A RIGID PLANAR PATCH

PART I

..Y. Tsai

and

T. S. Huang

Coordinated Science Laboratory
University of Illinois

5- Urbana, Illinois 61801

January 15, 1 ' ised May 26, 1981

: ABSTRACT

We present a new direct method of estimating the three-dimensional

motion parameters of a rigid planar patch from two time-sequential perspec-

tive views (image frames). First, a set of 8 pure parameters are defined.

\U These parameters can be determined uniquely from the two given image frames

by solving a set of linear equations. Then, the actual motion parameters

are determined from these pure parameters by a method which requires the

solution of a 6th-order polynomial of one variable only, and there exists a

certain efficient algorithm for solving a 6th-order polynomial. Aside from

a scaling factor for the translation parameters the number of real solutions

never exceeds two. In the special case of three-dimensional translation,

the motion parameters can be expressed directly as some simple functions

of the 8 pure parameters. Thus only a few arithmetic operations are needed.

El.



I. flNTRDUCTI0N

In the past, most work on motion estimation has been restricted to

two-dimensional translation. Recently, Roach and Aggarwa1 [1] and Huang

and Tsai [2,3,4] presented methods of estimating three-dimensional motion

parameters of rigid bodies based on image-space shifts. The method of

Roach and Aggarwal requires the solution of a set of 18 simultaneous non-

linear equations; that of Huang and Tsai 5 simultaneous nonlinear equations.

Huang and Tsai [4,5] also described a direct method of estimating three-

dimensional motion parameters of rigid planar patches based on the relation-

ship between temporal and spatial differentials of image intensity. This

method results in the solution of 8 simultaneous nonlinear equations. In

none of the above works was the question of the uniqueness of the solution

* to the nonlinear equations investigated.

In this paper, we present a new direct method of estimating three-

dimensional motion parameters of rigid planar patches. We define a set of

eight pure parameters and demonstrate using the theory of Lie Transformation

Group that given two pictures, these pure parameters are unique. As for

the estimation procedure, we first show using the converse of the 2nd

* Lie theorem [10-13] that these 8 pure parameters can serve as the coordinate

system of a certain Lie Transformation Group. Then, we use the result in

(10-15] to show that these 8 pure parameters must satisfy a set of linear

equations. Furthermore, the real motion parameters can be computed from

these pure parameters by solving a six-order polynomial.

ouar new direct method has several advantages. First, it requires the

solution of a single sixth-order polynomial of one variable only. Second,

it demonstrates that more than one solution may exist and therefore answers
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the uniqueness question. Third, in the special case of three-dimensional

translation, the motion parameters can be expressed directly as some simple

functions of the eight pure parameters. Therefore, only a few arithmetic

operations are needed.

II. THE BASIC MOTION EQUATIONS

We are interested in estimating three-dimensional motion parameters

of rigid and deformable bodies from time-sequential perspective views

(frames). Throughout this paper, we shall assume that we work with only

two frames at times t1 and t2 (t < t2 ).

The basic geometry of the problem is sketched in Fig. 1. Consider a

particular point P on an object. Let

(x,y,z) - object-space coordinates of a point P at time t

(x',y',z') - object-space coordinates of P at time t2.

(XY) - image-space coordinates of P at t1 ,

(X',Y') - image-space coordinates of P at t 1 .

.i It is obvious from Fig. 1 that

X-F -  x' -F

z z
i>-i (1)

Y" FZ ¥' F y ,
z z

Assume that from time t1 to t2 the three-dimensional object has under-

gone translation, rotation, and linear deformation [8]. Then, we have

Xx x AX

;: S y + R[;+ Ay (2)

where

... ....



- -

-3

S 1S11 12 S13

'."S " S 12 S 22 S 23 (3):'

S 13 S 23 S 33

.R 3 92 (]

R c2 0 l (4)

1 2 3

Note that (&xAy,&z) is the amount of translation S in the linear deforma-

tion matrix, and (R+ I), where I is a 3X3 unit matrix, is the rotation

matrix. The rotation is around an axis through the origin and with

directional cosines (uln The amount of rotation is S. Therefore,

the matri, adefined in (5) are the x, y and z coiponents of the rotation

vector with length e and directional cosines (n1,n2 n3).

Clearly, Eq. (2) represents an afine transformation

7.~1 F : 12 13fl
yI b b b23 J~ -jA (7)
L31 32 b33j j LAz]

Conversely, any afine transformation can be decomposed as in Eq. (2).
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III. MOTION OF PLANAR PATCHES

We now restrict ourselves to points on a planar patch with equation

ax + by + cz -1 (8)

at time t1. Then, it is readily shown from Eqs. (1) and (8) that

Z F
- aX+bY+cF (9)

and from Eqs. (1), (9), and (7) that

x'- 1 aX+a3~ T (x:,Y)

(10)
V a4X+a 5Y+a 6  A
a a= T2 (XY)',~ 7X + a +1 2

whereu.b 1 +a~x b2 1 +a~y"br 11 + A 1 + .

-1 b33 
+ cz b3 3 

+ cAz

i: hb +hb b2 + M y
1 2  2 2

-2 b3 3 + CAZ b33 + ciz

.13 + (bx)F 023 + c~y)F
a bb3 + cAz b+CAZ(

b31 +a az
(b3 3 +c€z)F

b +bAz:": aS b32+ z

a8  (b33 +c&z)F

We now specialize to the case of a rigid planar patch. Then Eqs. (11)

become I"
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' 1 + amc CP3 +

" 1 + iCU a4" l+ Cz

P .p+b :___
a2 =3 + cAz a = 1 +bAy

2 1 +CU 5 1 + €AZ

(cp2 + cAx)F (.p 1 
+ cAy)F

a3 +cAz a6  1 1+cAz (12)
U

"-2 + aAz

7 =(l+cAz)F

c +1 bAz

£8 =(1 + cAz)F

Eq. (10)defines a mapping from the 2-space (XY) onto the 2-space (X',Y').

It will be shown in Section III that corresponding to any specified mapping

between the two 2-spaces, there can be only one set of values for the

parameters al,...,a8' We call them the 8 pure parameters. In Section III,

we shall also describe a method of determining these pure parameters from

.. the two given image frames.

Once we have determined the pure parameters al,21 ... &82 we can

* attempt to find the actual motion parameters: &x,AyAz,cPl,2,93,a,b, and c

by using Eqs. (12). It is obvious first of all from looking at the right-

hand sides of Fls. (12) that Az is a scale factor which cannot be determined.

We therefore let

a" aAz b"z caz

(13)
.1 of

As Az

The unknown motion parameters are now:

91' '2' 93 ' AxI", Ay", a", b", and c.
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Thus we have 8 nonlinear equations with 8 unknowns. This, however, does

not mean that the solution is necessarily unique. In fact, it turns out

it is not.

After some tedious manipulations, we get from Eqs. (12)

dAx"6 + d Ax"5 + d4AXA + d3x, 3 + d2Ax" 2 + d Ax" + d -0 (14)
6 5 43 2 10

where

d 5 h6 (h3h2 " h6 alO)
6 062 2 2

d5 - h3 (h 2 + h6 + h3 " 4a1 oa 5 0

2 2 2d 4  -h3 (a50 + 5a10) + a10 (2h6  h 2 )

-3h2 h3 h6 + 4a a

2 2 2 2d3 -2h3(h2 + h6 -h3 + 4a1 o) (5

d~ 2 (- a) 6h2 -4a -2h + h)2 (h + 4a 50)aso + 1 2 2

-3h2h3h6

- 2 2 2 a2  -aad1  h3 (h2 + h6 + h3  l 10 50

2

d- (a5  a )h h2 (h2 a1 O + h3h6 )

and

h2  2 + a 4

ha
3

3 +F
a6

+h6 = 7 +a 8 F (16)6 8
a 1 0 - a 1 - 1

a' 0 - a5 -1:.:50 5~
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And furthermore

- -h6 ,.3 + h2 ,Xz -hAx + h2

-h3 .X12 + 2410-z" + h- i

h3Lx -" hNi ,y' -a0 -
h T I A 1  66ye . ah 3 0

Ax"',-h Ax" + a - "+5

. ".- x"
3 1 3b" a ',) + h6

(17)

A (h (a + h6

3 3-

ii .-Y b" -(.+ I,%Z- a + I) - ly". ,

a3
- -a" + (c + )a1 -(7 + '1)""

y"a" - 4 (+ ) --. "o" + a2(.+,)

To find the motion parameters, we first solve Eq. (14) for Ax". Then

the others are obtained from Eqs. (17). Since Eq. (14) is a sixth-order

polynomial equation, we can have potentially 6 real roots which give us 6

solutions for the Motion p4SMeters. For all the numericaL examples we

have tried, only two real roots are found for Eq. (14). QUe such numerical 7
example follows:

a .976 a2 -. 058 a3 -. 059

a".027 a -. 976 ' . .-.059

a7 .047 a a .047
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solution - 4X .9 AY .9

8- 1 n 1 -cos 90" n2 -cos 90' n3  cos O*

a/A = cos 60°  b/A - cs 600 c/A - cos 45*

A- a -b c- 1/10

Solution 2 -A = .707 -67 .707 42 i

= 1.59' - cos 58.4 °  n2 - cos 121.6' n3 = cos 47.94

a/A - cos 56.2' b/A = cos 56.2' c/A C cos 51.8*

A 2 .. b2 + 2 -/8.74

We mention in passing that an efficient iteratIve method for finding the

real roots of a sixth-order polyncmial equation is given in Ref. 7.

For the special case of three-dimensional translation, the results

are considerabl7 si:mpler. From Eqs. (12), we get

. a1(aja8F - aI + 1) + (alta - aza 7 )F

a7 F(a a F - aI + 1)

a1(a7aT¥ - a5 + 1) + (&5a7 - a~a8)F

a8 F(a 5 a7 F - + 1)

(aa 7F " a5 + 1) a 7 (ala8F - a1 4 1)a. ;)
S=al7 aa8 8 .a 2 a 7  (18)

b - 7 4 ) a8 (ala8F -5t 4 1)a
aa7 - 4a8 aa 8 - a2a7

a2 a7 Fa 1 + a4a 8 F-a 5 .I

1(a.a1 a a )F (aa -a

Ia 7 2 5 7 8

Therefore, only a few simple arithmetic operations are needed.
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IV. DETERMINING THE 8 PURE PARAMETERS

We now go back and examine Eqs. (10). For a particular set of values

for the parameters (al,a2 ... ,a8 ), the equations represent a transformation

which maps the 2-space (XY) (the coordinate space of our image frame at

' time t1 ) onto the 2-space (X',Y') (the coordinate space of our image frame

at time t2 ). Let us consider the collection G of transformation correspond-

ing to all (al,a 2 ...,ag) E R We shall show that it is a continuous (Lie)

group of dimension eight and that to any given mapping from the (XY)-

space onto (X',Y')-space corresponds only one set of values for

(a1,a2 ,...,a 8). Furthermore, we shall describe a method of determining

the pure parameters (al,a2,. ..,a) from a given pair of image frames at

times t1 and t2 .

In classical continuous group theory, it is known [13] that G satisfies

the four group axioms, namely, closure, existence of inverse and identity,

and associativity. Furthermore, the composition function for the group

* parameters ai's are continuous. It is also known [13] that the ai's in (10)'sar fuc iay n

are essential parameters in the sense that the at's are functionally in-

dependent. However, it is not known whether the ai's in (10) are unique, i.e.,

. whether there can be two different sets of values of ai's such that (10) gives

the same mapping (X,Y)- (X',Y'). Because of this reason, it is not easy to

verify whether G is a Lie group according to the modern definition since in

modern definition, in addition to the properties satisfied by the classical

continuous group according to the classical definition [12,13], several

topological properties have to be satisfied, and these properties can not be

easily verified unless we are certain that the group parameters ai's are

unique. In the following, we prove that G is strictly a Lie group and that

the ai's are unique.
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Before we give the proof, we motivate it by the following considera-

tions. Let us assume that G is indeed a Lie group and that (al,a2 ,...,a 8)

is a coordinate representation for the group G. The identity element of

the group is obviously e (1,0,0,0,1,0,0,0). Then the operators of the

Lie algebra associated with the group G are given by:

BT B T2
im- 2 (19)

a"j Jg-e Nge
-i X j g-0g~

where g is used to represent a member of G. From Eqs. (10) we get readily

-2 al
z3 -

(20)

a-2

Now we start our proof. Consider the set of vector fields on the

.differentiabLe manifold (ZY) as given by Eqs. (20). It cn be easily

verified chat none of the X can be expressed as a linear combination of

the others, i.e., t j: JamL,2,...,8 r are Linearly independent; and further-

more for any iJ

Mil X i j = -X L (21)
k
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' k

where ck are constants. From these two properties of [Xi] we conclude
ii

from the converse of Lie's second fundamental theorem [10-13] thatt here is a

unique Lie group of transformation of order 8 which has (K1  as its Lie

algebra. We proceed now to show that G is that group.

From (15,10,11], one can generate the finite equations of a Lie group

of transformation with the Xi's as the canonical coordinates of the

second kind as follows:

I' - expQ.sX8)expQ 7X7) ... exp( 1X1)X

(22)

V exp(X8X8)exp(% 7X7) ... exp klXl)Y

It is proved in (6] that (22) is equivalent to the following:

a X+aY+a 3  a4X + asY + a6X'- 1 2 3Ya 6(23)
a7X + a8Y +l a7 X +a 8Y+l

where

a 1  ek a2  2 %

a3 - (.3e +%.). a4  e L' • e

5  D 5 X5 X1  (-

a7 --Q, e +X.e Ae )X a8 - -aX.X2 + e ( +,2 ,4 4)

• l 5 5 L '

a = (1"7l +&6X2 )'. 6
eXX 8 a le %

%• %

Comparing (10) and (23) shows that G is indeed a Lie Group of trans-

formation, and that since the %i's are the canonical coordinates, they are

unique, and therefore from (24), the pure parameters a ... a 8 are also unique.
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Let f be any function defined on the 2-space (X,Y) (in our case, f will

be the intensity of the picture elements), then from Lie Group Theory

[10-15], we have

8
Af- E Xf (25)

where a e

ai = ith component of the group parameters at the identity

.f f(X',Y') - f(X,Y) - frame difference

(The implicit assumption here is that the intensities of the picture

elements in the image frames corresponding to the same physical object

point are the same.) Clearly,

I

. ai  1 -i 2,3,4,6,7,8 .

Eq. (25) is used to determine the I's and therefore the 8 pure parameters

ai's. We pick 8 or more points (X,Y), calculate at each point 4f and

Xif (i-1,2,...,8), and substitute into Eq. (25) to obtain 8 or more

equations which are linear in the 8 unknowns 0 I's. Then we find the least-" >i

*g square solution.

V. DISCUSSIONS

In this paper we have investigated the problem of estimating three-

dimnsional motion parameters of a rigid planar patch from two image frames.

The following results have been established:

IL.-= .- .- - , "-.'- .'' .' . .-.. '. . .-- . . . .< . -. . ". . .. " . -'.. -. ,
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I) The fact that we can define 8 pure parameters a 1 ,a ,...,a 8 which are

unique for any given mapping from the 2-space (XY) (the coordinate

space of the image frame at t ) onto the 2-space (X',Y') (the coordinate1..

space of the image frame at t2).

2) A method of determining the actual motion parameters ;l., i n

y I", a", b", and ; from the pure parameters a., a2, ... , a8 which

requires the solution of a 6th-order polynomial of one variable

only. Aside from a scaling factor in the translation parameters,

the number of real solutions never exceeds two.

3) A method of determining the 8 pure parameters &l a2 , ... , a8 from

the two given image frames. This requires the solution of a set of

linear equations only.

.1 It is to be noted that 1) and 2) are independent of 3). The pure

parameters can be determined by other methods. For example, if one can

identify 8 or more corresponding point pairs in the two image frames [21,

then the at's can be determined from Eqs. (10) by solving a set of linear

equations.

Recently, an alternative way of analyzing the uniqueness problem and

*! estimating the three-dimensional motion parameters has been developed which

stems from the results contained in this paper, and requires computing the

singular value decomposition (SVD) of a certain 3X3 matrix only. The eight

pure parameters defined by the authors in this work will again be used.

It is briefly mentioned in (61, and the detailed paper will be submitted

* soon.
" OOI
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Furthermore, the conclusion that the motion parameters are generally

not unique is of course independent of the method of determining these

parameters. The question arises: Are the motion parameters unique, aside

from the scaling factor, if the rigid patch is nonplanar? We have solved -:

this problem recently [7], and will publish it in the near future.
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Abstract

g We show that the three-dimensional motion parameters of a rigid planar

patch can be determined by computing the singular value decomposition (SVD)

of a 3 x 3 matrix containing the eight so called "pure parameters". Further-

more, aside from a scale factor for the translation parameters, the number of

solutions is either one or two, depending on the multiplicity of the singular

* values of the matrix.
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1. INTRODUCTION22

The processing of image sequences involving motion has become increas-

ingly important. Because of the key role motion estimation plays in image

sequence processing, a considerable amount of effort has been devoted to this

topic, for example, see Ref. [1-17]. However, except for (1-8][16](17], most

past work considers only2-D motion, especially translation. Ref. (1-8](16][l7]

-. were among the first to consider 3-D motion and (13(3)117] were among the

first to consider .the problem of uniqueness of solutions. in [1][31, the

eight "pure parameters" were introduced for the case of a rigid planar patch

undergoing general 3-D motion, and proved to be unique given two successive

(in time) perspective views. The proof makes use of the theory of Lie Group

of transformations. it-was also shown that these 8 pure parameters can be

a computed by solving a set of linear equations. Furthermore, once the pure

parameters are determined, the actual motion parameters can be computed by

solving a 6-th order polynomial equation of one variable if t:he motion is

- small. Theoretically, the number of solutions cannot exceed six aside from

a common scale factor for the translation parameters; experimentally, the

maximum number of solutions has been found to be two. In this paper, we show

that whether the'motion is small or not, once the eight pure parameters are

computed using the method described in [I1 C 31, the actual motion parameters

can be estimated by computing the SVD of a 3 x 3 matrix consisting of the

eight pure parameters. Also, by using the rigidity constraint and the fact

* that a plane in 3-space can be oriented in at most two possible ways in order

to intercept an ellipsoid at a circular cross-section, we prove that the

number of solutions is either one or two, depending on the multiplicity of the

singular values. Phi~sical description of the motion is stated and justified.
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II. THE EIGHT PURE PARAMETERS AND THE MTION OF PLANAR PATCHES

The basic geometry of the problem considered in [1][3] is repeated

here in Fig. 1. Throughout this paper, we shall assume that we work with

only two frames at time t I and t2 (t < t) Consider a particular point P

on the object. Let

(x,yz) - object-space coordinates of a point P at time t1 .

(x',y',z') - object-space coordinates of P at time t2 .

(XY) - image-space coordinates of P at t1. .

(X',Y') - image-space coordinates of P at t2 .

It was shown in [11(31 that for a rigid planar patch undergoing 3-D

motion (a rotation with a small angle 0 around an axis through the origin

with directional consines n, n2 , n3, followed by a translation with trans-

lation vector (Ax, Ay, 4z)),the image-space coordinates before and after the

motion are related by the following equations:

a X+ aY + a3

a 7X + a8 Y + 1

" -i where

"-a + a .Ax a5 I + b .ZAy
I____ a ___ + _Az 5 1 + -Az

.:i.. . n + b.Ax (-a 9 + c. y)F'i-
a.? 2 + Ca . 1 + €A z1

" (n 2 + c.Ax)F -n 2 + a.-

a3 1 + .ZAz a(1 + c.yz) F

. 3 + a.Ay a10 + b.&z
4 - 1 + .Az 8 -(1 + C.s)F
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~~Image .

(XlY): Image-space
I coordinates of the
U point P at time t.

(AX,4Y) :Image-
space shifts fromI =I~age-pacetime t, to t,, for

coordinates of the
V: : point P at time tz  the point P

Objec Space

(xy,z) = Object space
t~ -~coordinates of a physical::

point P on the object
at time t-

(x'ylz') = Object-space
"z coordinates of the same

point P at time t2

fIis. I Basic seamc.Y for th-e.-
dimusiona 1 moctoi

* *0scima*Uon.

.... , ,. . . -.. '. . -. . . . .. . ... . ."...,. ..- • , •. . .- i
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where a, b, c are the parameters chat appear in the following equation:

ax + by + cz -1 (3)

which describes the surface of the object in the object space coordinate

system at time t

Eqs. (2) are applicable when the rotation angle is small. For general

3-D motion, it is well known in mechanics and computer graphics [18] chat any

3-D rigid body motion is equivalent to a rotation followed by a translation

-X x, a x

'y' - R y Ay (4)

where R is a 3 x 3 orthonormal matrix

2
ni+(I-nI)cose nln2 (l-cose)-n 3sinG n1 n3 (l-cosS)+n2sine

R- n n2 (1-cosS)+- 3 sin9 n2+(l-n aa)cos- n2 n3 (l-cosS)-n-sinS (5)

n n3 (1-cose)-n2sin9 n2n3 (l-cose)+insine n2 2(1n2)€°se
1 -ni(l 3)

Following exactly the same procedure as in [1](3], one can show that j
(1) is again valid if (2) is replaced by

n + (1 )€os + a.Ax nln2 (1-cose) - a sinG + b.x
a1 . + (l-nJ)cos9 + C.Az 2 + (I- )Coss + C.tz

(n1n3(1-cos6)-fn2sin8+c.AxF nin2(1-cose)n 3sine + a.Ay

a3  n + (ln2cose + c.Y: a4 ni + (1-nf)cosO + (6)z' -: (6) "

n2i + (1-u2)cosO + b"Ay (n2n3 (1-cosO)+n sin8+c.&y]F
5 ng (1.n')cosO + CA a6 - J + (1..nd)cosB + c.Az

Sn 3 (1-cosO)-n 2 sin+a. Az n2 n3 (l-cose)tnlsin+b Az

a7 -nj + (1-nJ)cosO + c*Az a8 - i + (1-nfcos6 + c-AZ

where for sLiplicity we have set F - I.
,° " I
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It was shown in [11)3] using Lie Group Theory that given two perspective

views at tI and t2 , the eight pure parameters al, a2, ... , a8 are unique,

and they can be estimated by solving a system of linear equations.

. . . . . . . . .

6ij

"1
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III. COMPUTING ACTUAL MOTION PARAMETERS FROM PURE PARAMETERS

By using the rigidity constraint and the fact that a plane in 3-space

can be oriented in at most two possible directions in order to cut a circle

in an ellipsoid, we shall prove that the number of possible solutions for

the motion parameters can never exceed two aside from a scale factor for the

translation parameters. The number of solutions depends upon the multiplicity

of the singular values of the following matrix A consisting of the eight

pure parameters aits:
i.

[a1  a2  a3]

A - [: a a6 (7)
~a a8

The SVD of A is given by

A - U 2 V - UAVT (8)

"3

where X 's are the singular values of A, and UV are 3 x 3 orthonormal

matrices.

Let k - n2 + (l-n COSq9 c-,z; then it can be readily shown that

Ax a b c]

A =k'-1 R + 4y

A-kz
or Ax a b c

Az C(9)

-. or * [ [a

-kA R + AY

JEL IZ
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From (3) and (4), it can be seen that

Ax 1 [a b c] X

+

k kA y(10)

[2"
'L zz J

If we transform the original coordinate system with the orthonormal matrix

V in (8) as depicted in Fig. 2, where (x, y, z) is the new coordinate

system after transformation, we have

Kx

-i= r i+ r•~ U.

L JSustitutinge (11),n(12) inton (10)gves:.
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Zn

::y -:

!x

Yn FP-7274

Fig. 2 The relationship between the (x,yz) and
(xnyn , z n ) coordinate systems.

'" x'xi
: :n xn "
w 

I  --

V Y - k A V Yn (13)

By taking the Euclidean norms of the vectors on both sides of (13), .

we obtain

[x I' ZVI VT V 1 Xj T k [x n Z 4 AT V [x*(4•~ ~ Yn n v x k2 (x yn = v -
I nn n], Vn

Z'

':n Ln

Since V is orthonormal, vT.v on the left hand side can be replaced

by an identity matrix. Substituting (8) into (14) gives

, .
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X12 + 12 +~ -1 rxi
( n n c [ y) VTVZTUAVTV [~~J (15)

fo Replacing UU in (15) by an identity matrix gives

x n +y + - k (x7- + ky. + "3zn) (16)

This is the key equation that will lead us to the solution of the

uniqueness problem, as will be seen hereafter.

In the following, we state and prove three theorems regarding the

uniqueness and computation of the motion parameters given the pure parameters,

and the physical characterizations of the motion in the object space for

different multiplicities of the singular values of the matrix A.

*P

THEOREM I

If the multiplicity of the singular values of A is two, e.g., X

)2 3
L3 then the solution for the motion and geometrical parameters is unique

aside from a comon scale factor for the translation parameters, and

-'3 T
i I A - () )U 3 V 3

Axa -1 X.3

Ay -) U3 and b w V3

where s = det(U)det(V)

w is a scale factor

a,b,c are the parameters in (3) which is the planar equation of the
4
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object surface at time t

U V are the third columns of U and V respectively.

Furthermore, a necessary and sufficient condition for the multiplicity of

the singular values of A to be 2 is that the motion can be realized by

rotating the object around the origin and then translating it along the normal

direction of the object surface.

[Proof]

The two sides of (16) can be equated to a collection of positive

values corresponding to the range of values for x, y, z and x' , z

d be one such value. Then we have

x2 +y 2  2 (7d - n + + (17)

and
2 22 2 2 2 2 (18)

d k(,t + ,2yn + X 3 Z()

Clearly, (17) defines a sphere in the (x', y', zn) space, while (18)

defines an ellipsoid in the (xn, yn' z.) space. Since X1 , 2 two of the

three principal axes of the ellipsoid are equally long. Since the object

surface is assumed to be planar, the collection of the points on the

object surface that also satisfy (17) must be the circle which lies on the

intersection of the sphere and the object surface at time t2 (see Fig. 3).

Because of (16), (17) and (18), all the points on this circle at time t2

must also satisfy (18) at time tl, i.e. they must lie on the intersection

of the object surface and the ellipsoid. Due to the rigidity constraint,

this intersection should also be a circle. But the only possibility for a

plane to cut a circle out of an ellipsoid with two of the three principal
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n~ Zn

Ad

KX

I 0

Flq. 3 (a) Thle ocleet surface always intercepts the sphere defined

by (17) at a circular cross-section.

() Tne. oolect surface intercepts the ellipsoid defined by

(1v) at a circular cross-section only If it Is properly

oritented.
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axes equally long is that the plane be perpendicular to the major axis (the

longest one) of the ellipsoid, as depicted in Fig. 4. That is to say, there

is only one possible orientation for the object surface before the motion.

This is the key step that will lead us to the conclusion that the motion

parameters are unique, as will be seen shortly.

Note that XI (and X2) can never be zero since were this to be true,

the ellipsoid defined by (18) would have degenerated into two parallel planes,

and there is no way the object surface can intercept two parallel planes at

a circular cross-section.

IZ

Xn"'I

X

Yn ,P-7276

Fig. 4. The object surface must be perpendicular to the zn axis
to intercept the ellipsoid at a circular cross-section
when X" " 2 X
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Since, as depicted in Fig. 4, the object surface must be perpendicular

to the zn axis, and since the zn axis is obtained by rotating the z axis

' with the orthonormal matrix V as in Fig. 2, it is seen that

b - V 0 - wV (19)

€ w

where a,b,c are the parameters in (3),

V3 is the third column of V in (8), and

w is an arbitrary constant.

Substituting (19) and (8) into (9) gives

R+ [o 0oo w1 V kUAVT (20)

Ay

Az

TPremultiply (20) by U and postmultiply (20) by V to give

T 0 T kA(1

AY

AZJ

z J X
orF

AR' +10 0 w] k

Ay' I 2 (22)

where R'- uT V (23)



2-15i"[ 1u r

Ay' - Ay (24)

(22) gives

kX0 -w*Ax'

R' 0 -w'Ay' (25)

0 0 kX _3-4 z '

It will be shown now that x' and 4y' in (25) are zero, therefore R'

is diagonal.

Since U, V and R in (23) are all orthonormal, R' is also. Taking the

inner product of the 2nd and 3rd columns of R', and equating it to zero gives

kX 1w • y' = 0 (26)

x 1 and k cannot be zero since were X or k to be zero, the lst and 2nd

columns of (25) would be zero, which contradicts the fact that R' is

orthonormal. Obviously, w cannot vanish either, otherwise, a, b and c would

vanish, which contradicts (3). Therefore, (26) implies that 4y' = 0.

Similarly,-one can show that 4x' 0 0. Thus, (25) is diagonal, which,

when combined with the fact that R' is orthonormal, gives the following:

k - +1 or -1 (27)

" 3 -vAz' +1 or -1 (28)

We show that k has to be positive:

From (10), we have

a I k(a7x + aSy + z) (29)
°-7Z
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For x - 0 and y - 0, z' - kz. Since the object must be in front of

the camera, z and z' are both positive, which implies that k is positive.

Since X is nonnegative by definition, the right hand side of (27) can

not be -1. Therefore,

k 1

and

R ' .(30)

where s is either +1 or -1.

Since R' - URVT, we have det(R') - det(U)det(R)det(V) - det(U)det(V).

Thus a - detU)det(V). (28) gives the following:

13
&.. - s) (31) "

From (24), (31) and the fact that Ax' A Ay' 0 0, we have

[Ax ax' 0

A y U Ay' - U. 0

--1

- " . - s) U3  (32)

(19), (20) and (32) imply that

RZ X IA A cAy [
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"-A- S) U3 V (33)

In the following, it will be shown that the solutions for the rotation

matrix R in (33) is unique, and that aside from a scaling factor, the trans-

lation parameters Ax, Ay, az in (32) and the geometrical parameters a, b, c

in (19) are also unique.

The first thing to show is that, once A is given, U3 is fixed except

for the sign. From (8),

AA U3  3 U3  (34)
3. 3..

Let Q be any orthonormal eigenvector matrix of AA T . Then

2

AAT QT X2  Q (35)

2 23

From (34) and (35), we have

{QT [ 2 Q X.. :?: A2  Q 3  3

or

P u3  - 0

where

P A T 2 L1 QT X 2 X2  1 (36)
S 3  13 1 3

P has rank 2 since 2 - on the diagonal of the diagonal matrix in
'1 3

*1",
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(36) is nonzero. Also, P is fixed once A is given since P AA - 2 1.
P3

Therefore, U3 is fixed except for the sign.

The next thing to prove is that (33) is unique, i.e.

3)U3V X[a b CJ- (1-s) U3V3  - x

Ay

Az

is unique once A is given. Two cases are to be discussed. The first is

Twhen X 0 0. In this case, s - sgn(det(A)) since A - U A V and thus

s - det(U)det(V) - (k X X3 - det(A) - sgn(det(A)). Therefore, given A,

Ts is fixed. The next thing to prove is that U3V3 in (33) is unique.

Since U3 and V3 are fixed except for the sign, all one has to show

is that when V3 changes its sign, U3 uUest also.

From (8) we have

thu AV - UA " [XlUl  X2U2  X3U3 ]
~~thus

A V3 - 3U3

Since A and X3 are fixed given two perspective views, we see that when

V3 changes its sign, U3 must also. Therefore, U has fixed sign. We have

thus proved that the product

[Ex ta b C
and therefore R in (33) are all unique.

For the second case for which X3 - 0, we have from (33) that
3 .
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R X A +S U"V3 3

-1 A + de (U) U • det(V) V T (37)

If U3 changes its sign, det(U) will also. Thus the sign of det(U) U3 in

(37) remains unchanged. Similarly, the sign of det(V) V also is fixed when

V3 changes its sign. Therefore, the uniqueness of (37) is not shaken by

the ambiguity of the signs of U3 and V3.

T
Since A A have double eigenvalues, the eigenvectors V and V2 that

correspond to the mltiple eigenvalues Xl ( " are orthonormal to each

other but may be anywhere in a certain fixed plane perpendicular to V3 (Note

that we are now interpreting eigenvectors geometrically as some vectors in

3-space.) If the order of V1 and V2 on the plane are interchanged while

keeping V3 fixed, the sign of dec(V) will change. We are now to prove that

when this does happen, the sign of det(U) will also change, thereby keeping

(37) fixed. It is obvious from (8) that

(X A) V1 - U1

(X A) V2 " U2

Since X1 and A are fixed, when V1 and V2 are interchanged, U and U
ar inecagd U1 an 2

will also. Therefore, when det(V) changes sign, det(U) will also. Thus for

the case when )3 - 0, the product

[X x [a b c]

as well as R in (33) are unique.

b '"L" " H
° - I
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We are now to prove that a necessary condition for X- 1 2 0 X3 is

that the translation vector rAx is parallel to the normal direction

ayl
&Z

of the object surface at time t2.

Since before the motion, i.e. at ti, [a is normal to the object

surface, this vector is rotated by R at time t2  and becomes R b.

It is only necessary to prove that there exists a scalar q such that

Ayi , q R b (38)

From (19), (32), (33) and (38), we have

-)3 -1 3 V
w ("--S)U 3  - q[X.A- (--s )U 3 V] V 3

X3 1 X1331wV

..-: - q wXIAV 3  qw (-I -s) U3 V V3  (39)
1l 3 X 3 3  (39

But I

A 1  T U VT + X hu in (39) becomes
1 1 + X22 2 3 U3  3 V3

V3-T T + T
1V3 - il V V 3 + X2U2 V2 V 3  V3 V3

- 0 + 0 + X3U3  (40)

Substituting (40) into (39) gives

3> X X3
• " -V ( - s) U3  - q " -U q W sU 3  . ;'

I I I

7.i
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Therefore, if we take q as- w- s), then (38) will be satisfied. We

have thsproved that the necessary condition for X 1 # is that the
motion can be realized by first rotating the object around an axis passing
through the origin, and then translating it along the normal direction of

the object surface at time t 2.

In the proof of Theorem II, it will be shown that if the translation

is along the normal direction of the object surface at t, then the singular

values of A can not be all distinct. This fact, together with Theorem III,

provide the sufficiency part. Q.E.D.

* THEOREM II

If the singular values of A are all distinct, e.g., X1 > X > X3

then there are exactly two solutions for the motion and geometrical param-

eters aside from a scale factor for the translation and geometrical param-

eters, and that

S 0 B

Ax

Az

b: w dV 1 + V3]

L
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2 -2 2

"':~ 31 s 3)

A1  3~ 6

2(l + 2

a - det(U) deC(V)

(in each of the two solutions, sgn(S) --sgn(6).)

Furthermore, a necessary and sufficient condition for distinct singular

values is that the motion can be decomposed into rotation around an axis

through the origin followed by translation along a direction different from

the normal direction of the object surface at time t2.

(Proof]:

Since the three singular values are distinct, the three principal

axes of the ellipsoid defined by (18) are of different lengths. By using

the same argument as in Theorem I, the object surface at tI must be oriented

in such a way that it cuts a circle out of this ellipsoid. It is easy to

verify using basic analytical geometry that a piane can be oriented in only

two possible directions (see Fig. 5) in order to cut a circle out of an

' .ellipsoid whose three principal axes are of different lengths.Since A1 
> A2

* ,the longest principal axis is aligned with zn axis,and the vector normal to

the object surface is

w 0 where 6 :

in the (xn, yn, z.) coordinate systemiand w is some constant.
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.5'

Zn Zn

KX3I
AI
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AdK~

.K Z2
KX1 KX1

Xn Xn

rig. s the object surlace can be oriented in exactly two possible

directions In order to intercept an ellipsoid defined by C1i

.e at a circular cos,-sction when A.> A6. >A,

-- ----'*-

°,j
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Since, as shown in Fig. 2, the (xn, y., z.) axes are obtained by rotating

the (x, y, z) axes with the orthonormal matrix V, we see that

- [b - wV 0 (41)

where w is some constant. Substituting (41) into (9) gives

rAX
k A k U A VT  R + w &y [ 0 1 VT (42)

Az

Premultiplying (42) by UT and postmultiplying (42) by V give

rAX

kA- UT R V + w UT  ay 6 0 1 VT V

* Thus

R' k A - Ay' [ 0 1] (43)

where R' UT R V (44)

ax'I Ax

Ay' Aw UT Ay (45)

SAz' 
Z

From (43),

Le,
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0 -Ax' 0

R' -a Ay' kX2  -Ay' (46)

-5. Az' 0 k) -AZ'

Since U, R and V are orthonormal, (46) implies that R' is also orthonormal.

Taking the inner product of columns 2 and 3 and equating the result to zero

gives

kX2  Ay 0 (47)

Since 1 > )2  '3 > 0 , we have X2 > 0. Therefore, (47) implies that

Ayt = 0. Thus (46) becomes

k 6a 0 -AX

R kA-..x'' 02 0 I0(48)
S-0 k).3 -az'

The normality of column 2 implies that kA2  ± 1. But since k > 0 and

A2 > 0, we have kA2 - 1, or k - 1/2 . Furthermore, from the fact that

columns 1 and 3, as well as rows 1 and 3 of R' are mutually orthogonal, and

that the norms of the rows and columns of R' are unity, it can be shown that

0

.0 1 0 (49)

-a6 0 so

Al
where a - - 6.Ax' s(kX3 - Az') (50)

,2v (,2
" 1 =-Ax' = s6"Az' =  -:~?(51) .

(51)

s a det(U)det(V) (52) -
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Since U and V are orthonormal, from (52), s is either +1 or -1. It is to

be shown that although det(U) and det(V) may be +1 or -1 for a particular A,

s is unique once A is given.

Recall that U1, U2 and U3 are the eigenvectors of AAT corresponding to

eigenvalues X1, I and X2 respectively. Since Xl, I2 and X3 are distinct,

UI, U2, U3, Vi, V2 and V3 are all fixed except for the signs. However, as

was seen in the proof of Theorem I, we have

AV 1  - AIU1

A V 2 - A2U2

AV - A.U

3 33

Therefore, when U1 changes its sign, Vi will also, where i - 1, 2, 3.

Hence the sign of det(U)det(V) remains fixed. Thus, s is unique.

From (50) and (51), we have

1 A1::" -- " S " 6(53)
a 2

6(a- (54)
2

Cancelling 0 in (53) and (54) gives

2X, 11+ sN

X 2(1 + )

where 8 2(""

From (50) and (51), and the fact that Ay' 0 0, we have
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...Ay, 0 (55)

Az'So

From (45), (47) and (55),

. - 1 . U::!Ay . tU y w 0'

P z 1 ze L 3,.2

[w (- U1 + ( cts) U3] (56)
1 )2

-.* From (44) and (49),

R U o i 0 vT (57)

L-so 0 sao-1
From (41), (56), (57), and the fact that s is fixed, we see that there

are exactly two solutions aside from a scaling factor for the translation

and geometrical parameters.

It is to be shown that a necessary and sufficient condition for the

singular values to be distinct is that the translation vector is not aligned

with the normal direction of the object surface after rotation (or at time

t2). The sufficiency part was proved in Theorem 1. The necessity part is-j

proved by contradiction. We shall show that if the translation vector is

along the normal direction of the object surface at t2, then the singular

values cannot be distinct.

it was indicated in the proof of Theorem I that the normal direction :1

. . . . .'- : "- "_ . . . , " " . o " ., .H



" of the object surface at t2 is aligned with [ b Suppose y s

parallel to t b then

- Ay - h R b (58)

for some constant h. With (41), (56), (57) and (58), we have

-w- Ls U 0

°. 0'sa - U[ : :1{[I
0 - vh U 0

:")3 -s 90 0 1a

-. which implies that

.- i9 - wh (a* •8o+0) (59)

- and
0a - wh(-s• +s) (60)

h X2  (6
Subt~tuin h5)ad(5)it ( 9 a (+ O (5ves

and
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Az' = wh 3'-

-' (62)
1 + wh(1 * X2

But from (51),

-Ax' s Az' (63)

Substituting (61) and (62) into (63) gives

whS 3 wh "3

1 + wh(l + 6)2 1 + vh(l + 6 2

which implies that X -sx3 . Since X and X3 are nonnegative by definition,

we have X1 M X3. But this contradicts the assumption that X1 € X3. There-

fore, the necessity part is proved. Q.E.D.

Theorem III

The necessary and sufficient condition for the multiplicity for the

singular values of A to be three, i.e., X1  2 = X3 ' is that the motion consist

of rotation around an axis through the origin only, i.e. Ax - Ay - Az 0.

Also, the rotation matrix is unique, and R - X 1 A. The object surface can

be anywhere. .;

Proof ..

If X1 - '2 ) X3, then (16) gives

2 + +.z12  2 2  2 (64)a k k.(xn + yn + z,)

Since any 3-D rigid body motion can be decomposed into rotation followed

by translation, we first rotate the object such that (xnn, z) becomes

•."syn' " ). Then we carry out the translation which changes (x", y", z")

n a aa aI
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into (x' 7, z'). That is,
n

. nn nn

yn = - ' (65)

and

x~, X11, ax, ~ n nj3 'F

n n

Yn' Yn" + hY (66)

nA. a n n•(67)

whore R' Ax', Ay .' and &x .' are the motion parameters in the (x n, Ynt Zn)

space as defined by (23) and (2). (65) gves

xn+Y +(k2X2-1)y'2  n (kz-)' n] R2~'* F 2y'*

S"2 'A 2  2 06°!" + Yn + z

3 1

.'::This, when combined wit~h (66), gives

. 2 2 2.(x' - Ax,)2 + ty & Yt)2 + (, ,2
n1 Yn nr Y

(67)
".i From (64) and (67), we have

"n Y

Since (68) is true for all z# Y. and z', by equating the coefficients of

..
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all powers of x.1, yn and z'n to zero, we have

i:: Z~- A y' * I z' - 0

AI A-f&Zand

k,1  1 or k

4-K Therefore, from (24),

Ox -ay - &x 0.

Then, (9) gives

R+0 - kA, or R - X 1 A

Therefore, we ahve proved that if L = ' X3  then the motion consists

-of rotation around an axis through the origin only, and the solution for

the rotation matrix is unique. The object surface can be anywhere. This

proves the necessity part.

We now proceed to prove the sufficiency part. If the motion consists

of rotation around an axis through the origin only, i.e., Ax - Ay = Ax -0,

then from (9),

A k1l R (69)

Let UA R, VA - and AA - 1. Then (69) becomes

AA-

A U A [VIk ~ ~(0

1.
T"

-U - (70)%tA A

.ok
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Since UA and VA are orthonormal, (70) gives the SVD of A, with singular

values k , k"l and k . Then from the fact that the singular values of

any matrix are unique, we see that A has three identical singular values.

This proves the sufficiency part. Q.E.D.

IV. CONCLUSIONS

Three theorems have been stated and proved regarding the uniqueness

*i and the computation of the motion parameters, and the physical descriptions

and classifications of the actual three-dimensional motion for a rigid planar

patch. The motion parameters are unique aside from a scale factor for the

• "translation parameters if the singular values of the 3 x 3 matrix consisting

of the 8 pure parameters are not all distinct; otherwise, the number of

solutions is two. The distinction between the cases of multiplicity 1 and 2

lies in whether or not the translation vector coincides with the normal

direction of the object surface at t2 . If there is no translation at all,

then the singular values are all identical. In any case, once the eight

pure parameters are estimated, which can be done by solving a system of

linear equations, computing the singular value decomposition of a 3 x 3

matrix is all that it takes to obtain the 3-D motion parameters and the

directional cosines of the normal direction of the planar patch.
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* Estimating Three-Dimensional Motion Parameters

of a Rigid Planar Patch, III: Finite Point Correspondences

and the Three-View Problem

R. Y. Tsi and T. S. Huang

Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

M Two results are presented In this paper. First, it is shown

that in estimating three-dimensional motion of a rigid planar patch, the

eight pure parameters used in [1] and [2] are uniquely determined from

the image correspondences of four points, no three colinear, and can be

estimated by solving a set of linear equations. The second result con-

cerns the three-view problem. It is proved that given four image point

correspondences In three perspective views of a planar patch undergoing

general three-dimensional rigid body motion, the number of solutions for

the motion parameters is one, as opposed to two [2] when only two perspec-

tive views are given.



3-2

I. Introduction

The interest in notion estimation using image sequences has been growing

rapidly in many fields of research in the past fey years. The efforts in the

* 70's were primarily focused upon two-dimensional motion estimation ~Ll-181.

Recently, attention has been gradually shifted toward three-dimensional motion

estimation (1-10, 19-21]. The difference between 2-D and 3-D motion estimation

is not just the degree of difficulty or complexity in solving the motion equations.

* The issues of uniqueness, the minimum information required to ensure uniqueness

and the 3-D structure interpretation, which are not present in the study of 2-D

motion estimation, make the study of 3-D motion estimation more challenging and

interesting. Furthermore, due to the nonlinearity and the increase of the

number of unknowns of the motion equations for 3-D motion estimation, the

development of more clever and efficient ways of solving the motion equations

becomes also extremely important.

For the case of estimating 3-D motion of rigid curved surfaces, [31 presen-

ted an efficient algorithm for determining the motion parameters exactly without,

having to solve nonlinear equations, and was the first to analyze the problem

of how many image point correspondences are required to ensure the uniqueness

of motion parameters.

For the case of 3-D motion estimation of a rigid planar patch, a brief

introduction is given in See. 11. In this paper, it is proved that the eight

pure parameters [1,2] in the two-view problem are unique given the image

correspondences of four points no three colinear, and can be estimated by

solving a set of linear equations. For the three-view problem, it is proved

that given four image point correspondences in three (distinct) perspective

views, the solutions for the motion parameters are unique.
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II. The Eight Pure Parameters and the A Matrix

[]4
The basic geometry of the problem considered in [1] and [2] is

repeated here in Figure 1. Consider two frames at time t1 and t2 (t1 < t2 ).

For a particular point P on the object, let

(x,yz) - object-space coordinates of a point P at time tie

(x'y',z') - object-space coordinates of P at time t 2 ..

(X,Y) - image-space coordinates of P at t1 .

(X',Y') image-space coordinates of P at t2..

It is obvious from Figure 1 that

X Y.L
Z

where the focal length is normalized to one for convenience. It was shown

in (1] and [2] that for a rigid planar patch undergoing 3-D motion (a rota-

tion with an angle 0 around an axis through the origin with directional

cosines n1 , n2 , n3 , followed by a translation with translation vector (Ax,

AyAz))

Z °  Az

F yR = + Ay

zi .z AZ(1

where R is a 3 x 3 orthonormal matrix of the first kind

-*1
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(X,Y): Image-space
coordinates of the

~point P at time t

=Imcge(syaz) Object space ro
coordinates of athyihe-

tepoint PontebjcLon at time t

(x',y',z' )=Object-space

Scoordinates of the same
point P at time t2

Fig. IBasic geometry for three-
diensional mot ion
esimation.
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2 2

R ne 1 -cosg)+n3sing n 2 (- 2)cosO n2n (1-cosQ)-n sinG
21 9' mO-n U 3  1- 3 ) o O( )

nin (1-cosQ)-nshinQ n n3 (1cosGn sn (- c 2

* .'the image-space coordinates before and after the motion are related by

a7 + ajY+aI

+ aY +1 &6
a1 4X a Y a

+ a8+Y + 1 (3)

where the a i'a are such that if we define R to be such that

k n3+(1-n 3 )cosO + c.AZ

and let ax + by +. cz I be the equation describing tho- object surface

before motion (at t 1) then

a 1  a 2 a 3  Ax [ab c]

A a4  a5  a6  - R + Ay

a7  a8  1 As (4)

The eight ai's in A are called the pure parameters 11. Given A, the

actual motion parameters can be obtained by simply computing the SVD of

* the matrix A and the number of solutions for the motion parameters is

either one or two depending on the multiplicity of singular values of A [2).

As for the uniqueness of the pure parameters given the image motion, it

was shown either using Lie Group Theory (1] or elementary algebra [20]
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that given the image point correspondences of the whole plane, the pure

parameters are unique. It is the purpose of Section III to show that

it takes only four image point correspondences, no three colinear to deter-

mine the pure parameters uniquely. The algebraic proof in SectionIIIl

- is direct in the sense that the coefficient matrix of the set of linear

* equations that the eight pure parameters must satisfy given four Image

point correspondences is proved to be nonsingular, which directly leads

to the conclusion on the uniqueness of the pure parameters., The geometrical

proof in Section 111.2 is indirect in the sense that the pure parameters

are not directly shown to be unique, but rather the image point correspon-

* dences of the whole image plane are proved to be fixed given four image

point correspondences. In order to ultimately prove that the eight pure

parameters are unique, two more results are needed. [1] and [20] proved

that given the image point correspondences of the whole plane, the eight

pure parameters are unique if the 3 x 3 A matrix is nonsingular. This is

*j the first result needed. The second one is Lea II for the algebraic proof ,-

in Section II. 1. With these two facts and the geometrical proof in Section

111.2, one can conclude that the eight pure parameters are unique given

four image point correspondences, noncolinear b before and after the --

motion.
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III.1I Algebraic Proof for the Uniqueness of the Eight Pure Parameters

Given Four Image Point Correspondences.

From (3), we have

a1

a 2 2

a 8

74  
(5)

where x y 1 0 0 0 -x

0 0 0 111 -XY11

1X2 Y2 1 0 0 0 X2X2  -2'

M 3 Y 0 0 0 -X3X3' -Y313'

0 0 031 X
X3 Y3 X3 -Yy33

0 0 0 ~ 4 4

0 0 0 X4 Y4 1 -X~4 Y4Y4' (6)
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In order to prove that given four image point correspondences, the pure

parmeters are unique, we take the following approach. Let (X i ,Yi') be

transformed from (Xi¥yi), i - 0, . . . , 3, with some reference pure pare-

meters a °)s such that

a()X + a2(o)y + a (0)r a1  X1 + 2  1 3X ' =
I (0) (0)~a7(°X: + a8(°Y~ + I-"

Y 4(0) xi'+ a 5 (0)¥Yi + a"6 (0) 
:.

L a7 (°X i + a8 (0) i + 1 (7) .

a7  1 a 8

Then the elements of the matrix M in (6) contain the image coordinates

before motion (i.e., X 1s' and Y s') and the reference pure paramters a)s.

I Let A. be defined as

a(0) a2 (o) a3 (0)

Aoi=  a4 (o) a (o) a(o)
% 6

S7 a 8( ) (8) 

It is to be shown that if Ao containing the reference pure parameters is

nonsingular, then give four Image point correspondences with no three co- I
linear, (5) yields only one set of solutions for the a's, namely the refer-

ence pure parameters a( So

In order to simplify the analysis, let the origin of the image

coordinate system at t1 be located at one of the image points, say (X0,¥0),

at t1 .  It will be shown at the end of this section why this simplification

--_ ..I
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does not result . any loss of generality.

By setting X 0 and YOin (3) and (7) to zero, vs have

.xo1a' (0)

- 6  a(0) (9)

With (9), the number of unknowns now becomes six. Let G be defined as

a a a1 2 3

G f fa f AR

d d d (10)1 2 3

* iwhere

B1 12 1 31

Substituting (9),0 (10) and (11) into (5) gives

82

4a

a

874

a8 (12)
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where

djX 1  djl 0 0 ci .eY,

L. d2X2  d2Y, 0 0 e2X2  e2Y2

d3X3  d3Y3  0 0 3333 e3Y3

o 0 dlXl dlXl fIXI fly,

0 0 d X2  d2Y2  f21 f2Y2

0 0 d3X3  d3Y3  f3X3  f3Y3  (13)

1*1X1 3 7 1
(0) (0) (0)

a2  a -aX 23 8 2

X3 Y3

3.,(0) (0) (0

Xf2 i Y2th L:a We8(0) a 5:o is )
X3 y 3 (14) :

Note that B does not contain the unknowns a ul, l L 1,2,4,5,7,8. Therefore, "7

if D is nousingular, the solution for the unknowns, a,a 2 ,aaa 7 ,a,, is

unique. ieina 1, below, gives the exact conditions for D to be singular.

_71-- am~-.-
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Let D be given by (13). Then

detD)d~ 2d3 de A)de H XY 2-X2Y1) (X2Y3-X3Y2) (X3Yl-X1Y3)

where

Ao is defined in (8)

H is defined in (11)

dl3d d3 are given in (10)

[ Proof] The cofactor of the (11)th element of (13) is given by

d2Y2  0 0 2X2  e82Y2

d3Y 0 0

cof(dX) 0 dlX1  dly1  flK, fly

0 d2X2 d2Y2 fX f2Y

0 d3 X3 d 3Y3  f3X3  f3Y3

After some straightforward derivations, the above becomes

cof (d1X1) d dd (Y-XiY2)1e2 (d3f I-d lf3)Y3 -e (dfl-dlf2)Y2]

Similarly,

Ao~dX) * ~ 3(X1y3-X3Yl) Ell(d 3f2-d2f3)Y3-e3(dlf2-d2fl)Y1

and C-of(d 3X3) d d2d(X 2Y,-X Y2)[e2 dY 3-d 3fl)Yl-el(d2f3-d3f2)Y2]
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Therefore,

det(D) -d X cof (d X)-d ( d (
1 1 1X1) -dAcof ( 2X2 )d3X3cof ( 3X3)

d ddd3 [je (dlf2-daf) (X2Y3-X3Y2) (X.3Yl-XiY3 ) (XJY2-X2Yl)

-2 ( 1f 3 f31) (X1Y2-X2Y1) (12Y3-X3Y2) (X3Yl-X1Y3)

+ (d2f3-d3f2 ) (X1Y2-X2y,) (X2 Y3 -xY 2 ) (X3Y1-X1Y3)

d - dfdd -d-1 d23 [el (d2 f3 -d 3 f2 )-e 2 (dlf 3 -d 3fl)+e3 (dlf2 -d2fl)

(X.Y 2 -X2Y.) (X2Y3-X3Y2 ) (X3Y-X 1Y3 )

d d d det(A)
1 2 3, ) (X1Y2 -X2Y1)(X2Y3-X3Y2 )(X3Y1 -X1Y3)

O.E.D.

It is obvious from Lna I that if dl, d2 and dare never zero

(to be shown later), the D is singular and only if

(i) det(A) -0 (i.e., A is singular)0 0

(ii) det(H) - 0 (i.e., point 1, 2 and 3 are colinear)

(iii) XY 2 -X2Y - 0 (i.e., point 0, 1 and 2 are colinear)

(iv) X2 Y3 -X3Y2 = 0 (i.e., point 0, 2 and 3 are colinear)

(v) X3Y1 -X1 Y3  = 0 (i.e., point 0, 1 and 3 are colinear)

Note that (iU), (iii), (iv) and (v) exhaust all the possibilities for any

three among the four points to be colinear. We now show that dl, d2 and d

are strictly positive.



3-13

It was shown in [2] that

xi ±

Y£ kA yi 1 1, 2, 3 (15)

From(1)2

z1 ' - k (a7 (0)Xj + a8 (0)y1 + z

* . Substituting (o) into the above gives

z' -k (a7 (oz + as(0)z +zj)

or S

SX + a8()y + 1i- k i 1, 2, 3 (16)

Since the object points must be in front of the camra, z~ 1 (the normalized

focal length) and z_ > 1. [2] shows that k < 0 corresponds to the case that

the object points move to the back of the camera. ko obviously cannot be zero,

otherwise (15) would imply that all the object points move to the origin.

Therefore, from (16),

a ) + a8 Y + 1 =: k > 0 , 1, 2, 3.

i"i

From (10),

X(1,

i a X, a 8 Y i+ I 1, , 3
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* Thus

" di > 0 for 1 1, 2, 3.

We have proved that D in (12) is nonsingular if, and only if, A is nonsingular

* and no three points among the four are colinear. It is shown in the following

Laina that the restriction on A being nonsingular need not be imposed if
0

none of the three points are colinear both before and after the motion.

-: ema II:

Given the fact that the image points before motion (at tl) are not

colinear (or equivalently, at least three points are noncolinear), then the

following three statements are equivalent-

() Aois sungular

(i) The object surface passes through the origin at t2.

(iii) All the image points after motion (at t.) are colinear.

[Proof] We prove that (i) if f (ii) and (ii) if f (iii).

M(i) = (ii)]

Let the SVD of A be given by

A0 -U I ] vT (17)

33where X 1- X2 and X.3 are the singular values of Ao .  If A is singular, then

one of the singular values must be zero, since from (17) we have

#, * * -
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dot (A-dt (U) 2 ot(V

and therefore, if det(A) 0, then one of the I. a' must be zero. Substi-
0 i

tuting (17) into (15) gives

xv x

y'I -k U12 VT

or

xx *

o 2 y

z ~3

T

V1 J

-k 0 2T

T
~~3 V3 J (8

where

x y

,,, u

j (19)

y

4z
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A T
V - the ith column of VJ - 1,2,3. Since U is orthonormal, (19)

can be regarded as a rotation of the object-space coordinate system around

an axis through the origin at time t2. Zrom the fact established earlier

that one of the X s' must be zero if A is singular, we see from (18) that

by rotating the coordinate system around an axis through the origin, the

object surface coincides either with the x"y" plane or x"z" plane or y"z"

plane. This implies that before rotating the coordinate system using (19),

the object surface must be passing through the origin.

Since the object surface passes through the origin at t2, by

assumption, (18) becomes

T0 -k X2  V2 J

T

0 X3  v 3
TJ (20)

at the origin. Were A. to be nonsingular, %i' 2 and X 3 would be nonzero.

Then (20) would give

0 -

V1

0 " " J or

o v3 T

T

V3 ,

0 0 x i0

V 0 - 0 -J or JU y 0

0 0 z 0
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which implies that the object surface at t, passes through the origin.

The there exists a, a C R such that

z -a x+ y

From Equation (0) and the above,

2 C X + y Yz

Thus

aX+ y-

which implies that all the image points are colinear at t,# contradicting

'7% the premise of the leuma. Thus A has to be singular.0

From (iii), there exists ct, P-4 R such that

Y, C -X, +

From Equation (0) and the above, i

or af x' -y + P ' Ot0 which implies (ii)

From (ii), there exists ar, e R such that
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z ax + ymaz+ Y z

S or

oX + Y-

which implies (iii).

*End of Proof for Lema 11

Up to this point, we have proved that given four Image point

correspondences no three points colinear both before and after the motion,

the pure parameters are unique, if the origin of the Image coordinate

* system coincides with one of the image points at tie It is shown nov

that the latter assumption does not cause any loss of generality.

First, we shall show that given four Image point correspondences

In two frames, one can derive from this the Image correspondences of the

same four object points in two frames taken by the camera in the same posi-

* tion, but oriented differently such that one of the object points coincides

with the optical axis, i.e., the z axis. Since it has been shown earlier

that the pure parameters are unique given four image point correspondences

* with one of the Image point at frame I at the origin, we see that the 3 x 3

matrix containing the pure parameters for this new configuration designated

as An, is unique. Next# we shall show that the A matrix for the original

* configuration is similar to An, and can be determined uniquely from An.

The proof would then be completed. Now we furnish the details.

Since rotating the camera is equivalent to rotating the object

points, we now look for a rotation matrix R0 which can rotate the point

00



3-19

0

o RT
0 0o

or

0z
0

R 0
0 y

z (21)

where a is some constant. Let R oibe the ith column of R 0  1 1,2,3.

Then, from (21)

xe xo/zo xo

0

00

Since R 3 is normalized, we have

'CO

63 T22~ 1

and z 0- +7

Thus

R- RR

8 (22)
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where s (X2 + 0 + 1)and R 1 , Ro2 are two arbitrary column vectors

such that R is orthonormal. Note that although Ro is not unique, any

arbitrary choice of R0will lead to the desired conclusion, as to be seen

later. "

It is to be shown that the image coordinates of the four points

at t1 and t for the new configuration (all the points are rotated by Ro )
1 2 0

can be derived from the image coordinates for the original configuration.

Let (Xn Y Zni) be the object coordinates of the ith point

after being rotated with R 0and (xi Yn) be its image corrdinates. Then

y maR R -
n o ~ ii

Yni R 0 Yi R o2 Y

z n: z: i X sYo 2 z..

R Tx_

T- 62 J where.J y

s[XoYo1 J ,

-' a
i zi s [XOY0 1] J

T -lz Rol T

s[XoYol] J "  [X0 0 11 J' (23)

I,
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where

1

Simil(25)

R T

where%] i (26)

and~

:::~~ ~~~ Te thtill ~,Y'ar ucioso

Throrelh mg on orsodne rtenwcn

fiuainca eemne iety rmtoe o hUriiaLofiuain
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From (2]

U -

z z

n (27)

and

Eu z (28)

Since

Lz J

y Ra yu

L 
U

.,3 3-21

and H
:3 ,,' k 7

n n (8beoe

' 3 2 )'-..'

U Ur

S. . . . . . . . . . . . . . ..--
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"o. XI Il

U U

yn0 0 Yn

z z
n n (29)

Since it was proved earlier in this section that the pure parameters are

unique given four image point correspondences with one of the point at the

origin, An is unique. Therefore, comparing (27) and (29),

An-0T A R 0

or

A % An RT (30).

Although Ro in (22) is not unique, A is still unique since for any arbitrary

choice of Ro in (22) (Note that different Rw would result in a different An),

(30) is the necessary condition for all possible A's. Therefore, the pure

pa rameters for the original configuration are unique.

We have proved that given four image point correspondences, no three

Image points colinear both before and after the motion, the pure parameters

are unique.

-

:2"

.. . . . . ..

. "o. . .
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I.2 Geometrical Proof for the Uniqueness of the Point Correspondences

of the Whole Image Plane Given Four Point Correspondences

It is worth noting that the geometrical proof presented in this

* section does not lead to the conclusion on the uniqueness of the pure para-

meters directly. As explained at the end of Section II, it takes Lea II

in Section I11.1 and the results in [1)[20] to complete the proof.

It is to be proved that given the correspondences of four image

points in two perspective views no three colinear, the image correspondence

of any other point can be determined uniquely. In particular, let A, B,

C, D and E be five arbitrary points in frame 1, such that no three are

colinear, and let A', B', C', D' be the given corresponding points of A,

* B, C, D in frame 2, as depicted in Figure 2. We would like to show that

the corresponding point E' of E in frame 2 is uniquely determined.

*. A * B A'.i
* .6'

c 00
0OE

Frame 1 (at t1) Frame 2 (at t2)

* Figure 2 Five point correspondences in two perspective views.

it is easy to see that if a set of points in the image space are

* colinear, the corresponding points on the planar patch in the object space
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must also be colinear and vise versa. In fact, let (Xi Yi), £ = 1,

n, be the image coordinates of n colinear points on the image plane and

(Xiyi,zi), i - 1, ... ,n, be the corresponding points on the planar patch.

Then there exist a, b e R such that

X - aY + b

Substituting (o) into the above gives

i =ay, + bz (il)

which indicates that the object points are on a plane passing through the

origin. Since A, B, C, D are not colinear, from Lenma II of Section II1.1,

the object surface cannot pass through the origin. Therefore, the object

surface must lie on the intersection of the object surface and the plane

*described by (;l). Thus, the object points must be colinear. The converse

is obviously true since we can regard the object surface as the image plane

and vise versa and then repeat the above argment.

Next, it is to be shown that given the correspondences of three

colinear points, the correspondences of all the other points on the line

passing through these three points are determined.

Consider an arbitrary 4th point on the line passing through the

given three points in frame 1. Since it was shown earlier in this section

- that the points in the object space corresponding to a set of colinear

points in the image plane must also be colinear, we can see that the two

sets of four points, one set on the image plane, the other set on the planar

patch, are in perspective correspondence by definition [22]. Therefore,

the cross ratio [22,23] of the four points in the image plane is the same

I

4. .
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as the cross ratio of the four points on the planar patch at t1, which

S remains unchanged from t 1 to t 2 since the object undergoes rigid body

motion. Similarly, the two sets of points, one-on the Image plane and the

other on the planar patch at t2 also have the same cross ratios. There-

fore, the cross ratios for the two sets of four points, one at t 1 and the

other at t., are the same. Then by definition [22], these two sets of

Image points are In projective correspondence. It is well known in

projective geometry (p. 83 [23]) that the projective correspondence between

two lines is fully established when three pairs of corresponding points

are given. Therefore, we can see that given the correspondences of three

colinear points, the correspondence of any other point on the line is

determined.

Since there always exist two straight lines not parallel to each

other such that one line passes through two points among the given four

points A, B, C, D and the second line passes through the other two points,

we can assume without losing generality that the line passing through

points A,D, denoted by 9,is not parallel to BC. obviously, A Dr is

also not parallel toVE In this case. Since none of the three among

A,B,C,D are colinear, the point lying on the intersection of AD and BC,

r denoted by Go does not coincide with any one among A, BO C and D. Similarly,

the point lying on the Intersection of A D and "D denoted by G', does

not coincide with any one among A', B', C' and D'. If E lies on either

+4-
one of ADand Vs say AD, the corresponding point E' of E is fixed, since

the correspondences of the three points A, Go C, which are coliner with

E. are fixed. On the other hand, if E does not lie on either AD or BC, let
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.. and L be two lines in frame I not parallel to any of A and as

depicted in Figure 3, and let the points at the intersections of L1 , L

and BI be denoted by H and J, respectively, and the points at the intersec-

-tions of L1, L2 and AD be denoted by I and K, respectively.

L2  B
HH

G
EE

C KK

D

Frame 1 Frame 2

Figure 3. The point correspondence of E can be determined from the point

"- correspondences of A, B, C and D.

Since the correspondences of B, G aud C are fixed, the correspondences

of all the points on the line BC can be uniquely determined. Therefore,

the correspondences of H and J denoted by H' and J' respectively, are

* fixed. Similarly, the correspondences of I and K, denoted by ' and K'

: respectively, are also fixed. Therefore, the corresponding point of E in

.4
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frame 2, denoted by E', which lies on the intersection of V and 51KO

Sis fixed. We have thus proved that given the correspondences of four image

points with none of the three colinear, the correspondence of any other

point in the image plane can be uniquely determined. Therefore, the mapping

(xy) --+ (x',y') is fixed for all (x,y) R 2 . Since the image points are

not colinear, according the Lena II in Section III. 1, the matrix A0 is

nonsingular. Then, from [1] [20], the pure parameters are unique.

g -,1

I''
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IV. Uniqueness of the Motion Parameters Given Four Point Correspondences

in Three Image Frames

Consider three distinct image frames, taken at three time instances

t1, t 2 and t3 (t1 < t2 < t 3 ), of a rigid planar patch undergoing three-

dimensional motion. It was proved in Section III that given four image

- point correspondences in two image frames, the pure parameters are unique,

and from [2], given the pure parameters, the number of solutions for the

real motion parameters is two in general, unless the A matrix in (4) has

multiple singular values. In this section, it is proved that with four

point correspondences in three image frames, the solution for the motion

parameters is unique.

Let A be the 3 x 3 matrix containing the eight pure parametersii
for the motion from ti to tj, where I - 1, 2, 3 and j - 1, 2, 3 and let

k be the associated constant k as used in (4). Consider a particular
ij

point Y on an object. Let

(xyz) object-space coordinates of P at t 2

(x,yZ') object-space coordinates of P at t.

(x",y",z") = object-space coordinates of P at t 3 .

(X,Y) - image space coordinates of P at t 2 .

(X',Y') - image space coordinates of P at t 1 .

(X",Y") - image space coordinates of P at t 3 .

-3l

It can be shown that A A and k ki 1. In fact, from (15),

4::::
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xl x

y' -k 2 1A 2 1  y

p. - ' (32)

and

z xl

k12 A12 y

3 3 (33)

Since four Image point correspondences with no three colinear are given,

according to Lama ii in section J11.1, Aij is nonsingular. Therefore,

(32) gives

xl x

2 21

p ' (34)

Comparing (33) and (34) shows that

A12 21' k.mk (35

is one possibility. Slce& it was proved In Section 111.1 that given four

Image point correspondences, the matrix A is unique, this must be the only

possibility. We are now to verify the following composition rules for A 'sij

and ki 'a:



3-31

Aij nj Ain (6

k -k k (37)
ij nj in

vhare1*1, 2, 3, j 1, 2, 3, n 1, 2,3 and n i, n~

From (15)# ve have

k AI

y 12 12

z (38)

and

ZIz (39)

Substituting (38) into (39) gives

of k2 3 kcLA 2 3 Au2 y

3"a (40)

But by definition,

y k 13A 1 y'4

ZVI 3' (41) ]L..1
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! o From (40) and (41), we see that

A13 23A12

k 13 -k23 k2

is one possiblity. Since A13 is unique given four image point correspondences,

this must be the only possiblity. As for other values of i, J, n In (36) and

(37), the proof is the sa except for the change of indices.

Since moving the object is equivalent to moving the camera so far

as the image point correspondences are concerned, the situation can be

depicted In Figure 4 where 01, 02 and 03 are the three focal points for

the three image frames when the planar patch is considered to be stationery

while the camera is moving, for the purpose of showing the relationships

between A 'a and the three image frames. 02 *

01 A12  A23

03

A21: A1 L A32 A23I '.(image attime tY

(image at time t1) A(ia A2 3 Ag (age at time t2)

Object Surface

OPP - 73.

ri4ure 4. OJe Au's and the three image frames of a rigid planar patch................ * .-
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Since four image point correspondences are given, A and A3 are fixed.

Therefore, all Aj'a, for i - 1, 2, 3 and j 1 1, 2, 3 are fixed. Then,

from [2], for the motion from t 2 to tl, there are two sets of solutions

for the motion parameters given A2 1 and for the motion from t 2 to t 3 , there

are also two sets of solutions for the motion parameters given A2 3 . Since

these two motions, one from t2 to t 1 and the other from t2 to t3 , can be

completely independent in general, the only possibility for the solution

of the motion parameters to be unique is that not both of the two solutions

for the orientations (i.e., the directional cosines of the normal directions

*{ of the object surface) of the planar patch corresponding to the two solutions

of the motion parameters for the motion from t2 to t1 coincide with those

for the motion from t2 to t 3 . This is to be proved by contradiction.

Assume that there are indeed two solutions. Let the SVD of A beiSii

Au Uij Au VT (42)

where

(i~j,

11-"Aj - (iJ)"
ii

I ( i ' j )  (43)
3

oThe approach we shall take is outlined below:

(i) Prove that

_........ . . . -- -- -- '-.- ~ -... . . - .--.... a.--- .. ~
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V2 1 mV 2 3  :l

L. +'1 "

(ii) Nova that A2 1 = ; A2 3 for some constant S.

(IL) Prove that A13 - I. Then the three singular values for

the motion from t1 to t3 are identical, vhich implies from

[2) that the solution of the motion parameter, for the moation

from 1 to t3 is unique, contradicting to the assumption

that there are two solutions.

The details for the above three steps are now given:

(i) since tha order of 1 2 ( 3 be rearranged

by parutating the columns of and in(2Vw a

always assume that

1 2 3

and

(2p3) (2,3) ( (2,3) (45) -
1 2 3 (5

if any of the equality signs in (44) holds* ie, A2 1 has multiple singular

values, then for the motion from t2 to t1 , the solution for the motion

parmeters and the orientation of the object surface at t 2 are unique

-. according to Theorem I In [2]. Then, for the motion fror t2 tot 3 the

2 39 th
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solution for the motion parameters must also be unique, since were this

false, the A23 mst have distinct singular values and there would be two

solutions for the orientation of the object surface at t 2 . Similarly,

if any of the equality signs in (45) holds, the solutions of the motion

parameters are unique for both the motions from t 2 to t1 I and t 2 to t 3 .

Sif only the inequality signs in (34) and (35) hold, then from Theorem I

*+ in [2], the two solutions for the directional cosines of the planar patch

for the motion from t 2 to tI are

a1  6

- A
d- b V

:+ a2 V " 1

d 12  w V2 1  0

1+ (46)

* and

a2 6

AA

.bo-

d2 b2 V2 1  0

L 1 (47)

and for the motion from t2 to

a1 6

'i b 1 23

c1. (48)

. .. .

.n * . . -

"I6
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and

U-' a2  -6

jA b'1 A ,vo
d2 b2 invV 2 3  0

c2 ' 1 (49)

where v and v' are some normalizing constants

r~2,)12 r2 )12 1/2

[(291)] ,(1) /

22

(2,3[ (2,3)

Since the two solutions for the directional cosines of the object surface

at t2 for the motion from t 2 to t1 are assumed to be the sm as those for

the motion from t 2 to t 3 , either

d 2 2 (50)

or ')

dI
1 2 d d2  dl1

Let "J) be defined as the nth colum of V for n 1, 2, 3. Then,

from () and (47),

o ...
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d1 4d -V V 0 HI221 31

1

Since the norm of V~ 2 1  is unity, we have from the above,3

d+ d 3

l d 2 ~ (52)

We now show that V2 is given by the normalized outer product of dIand a

d X 2 w V21 0 X wV 2 , 0

1 1i1

-6V~
2 1  x V + V~' 1  X V 2 " (53)

3 1 3 3

where "x "stands for vector outer product.
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2 ,9)x V 2 ) 3-38

3

,i 9 weV have from (53),

d I x d2 - 2w.2 6V . X Vi (54) -

(2,11

Since V(2,1) is an orthonormal matrix, we have

4v( 2 91) V (~2,1) .- (,1

Substituting the above into (54) gives

- d .% (2,1)
1 2 i2w62

Since V' 1) is normalized, we have from the above
2

d IX d2

dX X d2 2 (55)

Since V2, to orthonormal, we have

1i i ± i
* -

Substituting (52) and (55) into the above gives

V 2 1). ± 1 2 X 2

d X d2  dl +d ] (56)

Slmilarly, for the motion from t2 to t3, one can show using exactly the

procedure as above that coluns of V23 can be expressed as functions of

dI and d 2' in (48) and (49) as follows:

:" : -; , .'"- ." -v . , . . 'a. . . " " -d
,12 ... , , .. ,re ., .,, -,-, .,,, ,, -, .,,i,. ,.,- ,,,,-,,:. , -., --- . . .~
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".,d' + d2
1 2

(2,3)_____ __

3i +

fd 1 '+d 2 11 (57)

d I' x d2 I (5)

V(2,3) + 1 2 X 1 d2 "

V2  -+ .__ _._: , -
f1 d'+Xd 2 ' I I 2II (58)

d~'3  + d 21 1 Xd2 (9

With either (50) or (51), we have from (52) and (57), v(2 1)  + v(2,3)

and from (55) and (58), vi + and from (56) ,Ad (59),

V(v.1)'+ . Thus, ve have proved that

±1

V21 Vn"23 +1

+1 (60)

(ii) Let (x , y za)' (x" n y "n') z and %" y"a 1") be the
U Nn a a

now coordinate systems obtained by rotating the coordinate

system (x,y,z) at t1 , (X',y',z') at t2 and (Z",y",z") att 3*

respectively, using the orthonormal matrix V2 1 as follows:
V af.

-t" - - - - .

"W , .- ! : ,*,: "': " , 2 ", , i - i. , - " -:" - . i .. " .... -. ._ " .. _' . ." .. _
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A T

L-% J 2 (61)

, A T

x x21

Yn V2 1

L x of L zl 1(63)

From (60) and (61), we have

Z n +±1 T

Yn V2 3  +1

L1 K

+ 1 T

V2 3  y

+1
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"-" or

0? in

s ~ vT
-2 n V23

3 Z z (64)

where a4 = +1, 1 . 1, 2, 3, Similarly, from (60) and (63), we have

a y" Z ZV

2 Yn V23 7"

- Z" Z" (65)
-3n

(64) and (65) indicate that the new coordinate system (a, yi, n) nn -n

(61) and (xn", Yn"' Zn") in (63) can also be obtained, except for the signs

by rotating the old coordinate systems using V23 instead of V21. Note

. that in (64) and (65), (x, y, z) is the coordinate system at t2 and (x", y", Z")

is the coordinate system at t3 , while V2 3 is the matrix in (42) containing

the singular vectors for the matrix A23 which characterizes the motion from
23:

t 2 to t3 . SIailarly, in (61) and (62), (x, y, z) is the coordinate system

at t2 and (x', y', z') is the coordinate system at tV, while V21 is the matrix

In (42) containing the singular vectors for the matrix A2, which characterizes

the motion from t2 to t1. According to [2], if the original coordinate

systems in the object space are transformed as in (61) and (62) using V2 1

for the motion from t2 to t1 , there is a rigid circle lying on the inter-

section of the object surface and the ellipsoid

d k 2 t[% 2 ,)j 2  + [X2 ,1 )]2 y2 + [(2&) 12 2 (66)
113
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at t 2 , while at t 1 , this rigid circle must lie on the Intersection of

the object surface and the sphere

Id 1 - x2 nn+ yn + an (67)

where d1 is some constant. We would like to show that this rigid circle

mst be concentric, on the object surface, with another rigid circle that

lies on the Intersection of the object surface and the ellipsoid

I2  n( 2 93 ) 2  2 ~(293) 2 2 (68) 2
2 23 .V' 1 J z + %A 2 J yo. + (X 3  zn(8

at t 2 and on the Intersection of the object surface and the sphere

d 2 . 12 + 11 (69)
2 + nu %

at t 3 for some d2.

Because of (60), (61) and (64), we can see that the principle

&as of the two ellipsoids in (66) and (68) are the same. From (46), (47)

and (61), the solutions for the directional cosines of the planar patch at

nt2 n the new coordinate system for the motion fro t2 to t are given by

1 1

Similarly, from (48), (49) and (64), the solutions of the dixectional cosines

of the planar patch at t 2 In the new coordinate system for the motion from

t .to are given by

2 3 . .
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V2  w. 2 3  0 w

From the above cwo equations, we can see that in the new coordinate system,

the normal directions of the object surface at t2 must be perpendicular to

the yn xis, both for the motion from t 2 to tj and for the motion from t2

to t3 . Since the principle axes of the two ellipsoids in (66) and (68)

coincide with the , Y. and z axes and since the normal direction of the

planar patch is perpendicular to the y axis (or equivalently, the planar

patch is parallel to the Y. axis) we see that the centers of the rigid

circles lying on the Intersections of the planar patch and the ellipsoids

either in (66) or (68) must be on the z a plane. Obviously, for a

particular planar patch, as d I Increases, the dimension of the ellipsoid

S- in (66) also Increases and, consequently, the center of the rigid circle

that lies on the Intersection of the planar patch and the ellipsoid becomes

closer to the z axis. In the limit, as d1 goes to Infinity, the center

is on the n axis. Similarly, as d2 becomes large, the center of the rigid

circle on the intersection of the planar patch and the ellispoid in (68)

approaches the z aaxis. On the other hand, as d1 decreases, the rigid

* circle lying on the intersection of the planar patch and the ellipsoid

in (66) gradually shrinks to a point. For a particular planar patch, let 4

the distance between this liting point and the n axis be P1 . Similarly,

as d2 decreases, the rigid circle lying on the intersection of the planar

patch and the ellipsoid in (68) also shrinks to a point. Let the distance

between this limiting point and the s axis be Then it is seen that

the distances between the s axis and the centers of the collection of
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circles lying on the planar patch and the ellipsoids In (66) for some range

of d1 vary between O and Pis while the distances between the an axis and

the centers of the collection of circles lying on the planar patch and the

ellipsoids in (68) for some range of d2 vary between 0 and P2 . Let P3 be

such that

,;.: O < P3 <  ln P 'P2 ) "

nrwm the above, It is obvious that there exist at least two rigid circles

lying on the intersections of the planar patch and the ellipsoids In (66)

and (68), respectively, such that the centers coincide with each other and

the distances between the center and the %n axis is p3.

Let the equation describing the object surface at t 2 be expressed as

a X+ y+y s- (70)
I-"

for some as 09 Y E R. Note that at this point we do not Iniow whether

S a, s and y in (70) are unique or not. However, any choice of a, 0 and

Y will lead us to the conclusion we are expecting for step (iL) as to be

seen In, the following. Substituting (70) Into (66) gives

-J 2 [ + [ z(2 l y1
+ U d (.[(2, 2

2r .. (291)
+ 3, d (71)

vSiflarly,, substituting (70) into (68) gives

l ', , ,- 'g,~~~~~... . -.'.-.,...-,'. . -. 2 .. -:'.'.... '...... ....... ,..- -..-...-.... ,,...,-.- .-................... ,,...-..
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. ,(2,3) [ 2&3) 2(23 2,23 2 2 3 ~ 2r - Fa L 231
4 Ln)L . 2 Yn

(2,3) 2

- d2  (72)

Since no longer appears in (71) and (72), the wo curs'in Lthe zy
plane described by (71) and (72) are the vertical projections of the two

"ncentric circles in the (gn, Yn' *n) space into the xn yn plane and,
therefore, ust be two ellipses that are identical up to a scale factor.

By equating the coefficients n (71) and (72) up to a positive propor-

tionality constant h, we have

2,l) 12 h 2 )(2~3"1 [(21) 2 "2" 3 + (73)
-2-2

i:[x2 ,] 2

(291) 2 h [ ( Y23 2

2i[ (2"")12 (75)

[.[.(221( 27

Let '*ketmX2)" (Note that d nd h ae all positive). hen (74)

- ': ' b e c o u e s
(291) 2(2,Y)23)1 * , )h h 3

.4.

Lut since the s i(nular values are nonne atlve by defiti.on, et have

2.
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(291 (293)
r.. "")3121 9" X 312 (77)

Similarly, (75) gives

2 2(78)

Substituting (78) Anto (73) gives

(2,1)1; * [Ej 2X 3)- , 2  . W, (2,3) 2 :M- X(213

-. or [X-1(2,1)1.2 " EI x -11293)1.2

0(
2 91 ) (293)

or g i - (79)

From (77), (78) and (79),. we have

A23  - a A23  (80)

(iii) From (36), we have

A13  £ A23 A12 (81)

(35) and (81) give

"1" A23 A;1

( A V2)(U A T -
'23 23 23)(21 "21 V2 1 )

(U23 A23 V2 3 )(V2 1  21 21 (82)

Substituting (60) and (80) into (82) gives
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AI3 -U 2 3 A23 V2 'V 23  1 1

,,U 2 3 A23  A23 U23

mi -U 2 3 1 tl A" -3 _T

ai gA 3  23 u23":

23 (S

T

U232

V U23 (86)

',:Since U2 is orthonormal, t is obvious from (85) and (86) that U and V

' ,.a re orthonormal. Alsop since $ a 0, A in (84) is a diagonal matrix with

nonneative diagonal elements. Therefore, from definition, (83) is the

!u "

slar vhnrale decmpstonfAu since the i (4 isdinar alue aret
130J
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unique iven A13" we have

A " A - 8-1, - (87)

i~i" 11,3) .(103) ).(193) -
Therefore, X1  s ),2 .,, .,

Since the three singular values of Ai$ for the motion from t1 to t 3 are

identical, from Theorem III in (2], the motion parameters are unique,

contradicting the assumption that there are two solutions. We have thus

proved that given four image point correspondences in three image frames,

the solution for the motion paramters is unique.

I.,

P:.

.. . .. . . . . . . . . . . . . . . . . . . . . . .

A . . . . . . . . . . . . . . . . .
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V. Conclusions

We have shown that in estimating three-dimensional motion parameters

of a rigid planar patch the eight pure parameters used in (1] and [2] are

unique, and can be determined by solving a set of eight nonsingular linear

equations given the image correspondences of four points vith no three

colinear both before and after the notion. In 121 It was shown that given

the eight pure parameters, there are two possible solutions to the motion

parameters. It is proved in this paper that given four image point cor-

respondences in three (distinct) perspective views, the motion parameters

are uniquely determined.
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